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The methods for determining kinetic constants may have significant effects on the 
estimation results. The two-variable linear correlation method leads to values of the 
kinetic constants for which the difference between the calculated and measured values 
is comparable to or greater than the measurement precision. The non-linear method 
for calculating kinetic constants by searching for the minimum of the error function 

N 
S 1 = ~ (rnit -- nh)e/N, where ml and mtt are the measured and calculated values, 

i=l 
respectively, and N is the number of experimental data, gives very precise results. A 
simple calculating technique is necessary for the fitting of the minimum point and the 
confidence region limit at the significance level. An appropriate calculation was made 
for metal oxidation according to the parabolic law. 

The estimation o f  kinetic constants f rom thermogravimetric  data  is a specific 
case o f  the wide problem o f  the estimation o f  mathematical  model  parameters f rom 
experimental data. When  the number  o f  observations is greater than the number  o f  
parameters estimated, the task consists in choosing the parameter  values best 
describing the phenomenon  investigated. The sum of  the square differences o f  the 
measurement  results and the values predicted for the given model  parameters is 
usually assumed as an accordance value. 

Those values are the best whose sum is the least. The estimation is therefore fre- 
quently identified with the least squares method.  The problem formulated above is 
an example o f  determining the constraintl  minimum, where the sum o f  square 
differences is the minimized objective function, and the mathematical  model  equa- 
t ion is the constraint  generator  for  the individual experimental data. For  a given 
constraint system: 

Fj(a, Yi) = 0 j = 1, 2 . . . .  , (1) 

it is necessary to find the parameter  values o f  the model  a T = (o"1, oh, �9 �9 tYp) T 
giving the min imum value o f  the objective funct ion 

f = ( Y~J- 
i=1 i=1 ~ ] 

10 J. Thermal AnaL 25, 1982 



378 SMIESZEK et al.: R E M A R K S  ON THE K I N E T I C  CONSTANTS 

where N is the number of experimental data, w is the number of values mea- 
sured, p is the number of estimated values for the vector cr, [Ylj, Y2i . . . .  Ywj] T ist 
the j-th experimental data vector and ['71, Y2, �9 �9 Yw] T the values estimated for 
the given parameter vector o-. /tij is the precision of the measurement determined 
by the value of the standard deviation. The task is simplified when additional as- 
sumptions are introduced regarding the kind of values measured. As the inde- 
pendent values, the values in the given measurement are taken, and the de- 
pendent value is the response of the object investigated. It has been assumed that 
only the dependent values are charged with the measuring error. The calculating 
estimation procedure is the simplest in the case of the linear constraints (1), and 
thus it is intended to obtain either a linear mathematical model of the phenomenon 
investigated or to present in the longer form the relations between the functions 
of the values measured. To obtain a linear relationship, for example logarithms 
of the initial equation of the mathematical model are taken, yielding the relation 

Y - -  A X  + B (3) 

where Y and X are the known functions of the values measured, and A and B are 
the known functions of the model parameters. The values charged with error are 
arbitrarily selected from variables X and Y. 

Such a procedure is treated as the most acceptable although there is an opinion 
that it may garble the estimation results. Usually this kind of reckoned error is 
taken as insignificant. 

This allows determination of the minimum (2) under non-linear conditions, lead- 
ing to the values of parameters estimated, describing the set of experimental data 
more precisely [1]. 

The task of this paper is to present the effect of the method of determining the 
kinetic constants on the estimation result. Although the calculations involved the 
estimation of kinetic constants from thermogravimetric measurement results ob- 
tained under conditions of linear temperature increase, the results presented here 
have a broader meaning. Similar problems also occur in the case of using isother- 
mal thermogravimetric data, as well as in each case of estimating the mathematical 
model parameters from experimental data. A wrong calculation procedure may 
lead to unacceptable parameter values. Errors, even significant ones, occur when 
the experimental data do not fulfil the assumptions of the selected estimation pro- 
cedure. 

The linear correlation as a method o f  the estimation of  kinetic constants 

The majority of methods used for estimating the kinetic constants are based on 
the linear correlation of two variables. The advantage of these methods lies in the 
fact that the equations combining the estimated parameter values and the experi- 
mental data are the simplest [2]. The methods for estimation of the precision of the 
results obtained are also known. 

Among many methods for determining the constants from measurements under 
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conditions of linear temperature increase, the most popular are the differential 
method, the integral Coats-Redfern method [3], and the logarithmic integral 
McCallum-Tanner method [4]. For metal oxidation according to the parabolic law 

dm = koexp(-E/RT ) 1 (4) 
dt 2 m 

where m = mass, t = time and T = temperature, E = activation energy, R = gas- 
eous constant and k 0 = pre-exponential constant different linear equations are 
obtained, depending on the method applied. For the differential method, we have 

[am I k o E 1  
In ~ = I n  2 R T "  (5) 

The integral Coats-Redfern method is based on the relation 

2 In (m/T) = In k~ E 1 
/?E R T (6) 

where / / i s  the heating rate. 
The logarithmic integral McCallum-Tanner method leads to the equation 

[ k~ } 0.119331 E) ~-  1 21nm = l n - - ~ - -  0.02965 E ~ - (1034 + (7) 

where the activation energy E is expressed in J/mol. 
The integral method equations have been obtained by integrating Eq. (4) for 

the initial conditions m = 0, T = T o for t = 0. The temperature integral 
T 

J" exp (-E/R~)d~ has been approximated by means of the asymptotic approxima- 
0 
tion expression [5] limited to the first two terms in the case of the Coats-Redfern 
method, and by means of the logarithmic approximation expression of McCallum- 
Tanner (more precise than the similar Doyle approximation expression [6]) in the 
case of the McCallum-Tanner method. It has also been assumed that for T = T o 
the temperature integral value is small enough to be neglected. Additionally, in the 
case of the Coats-Redfern method it has been assumed that 2 RT/E is smaller 
than one. 

The Eqs (5) to (7) are linear ones of the form Y = AX + B. The known estima- 
tion procedures based on the least squares allows for determining the constants A 
and B, and thus the activation energy E and the pre-exponential constant can be 
obtained. These calculations may also take into account the statistical weight 
of the dependent variable determined by the value of the standard deviation s(Y). 
Since the variables Y and X are functions of the values measured, there is no limi- 
tation to the use of an equation reverse to Eq. (3) 

1 B 
X = ~ -  g - - y  (8) 
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as the basis for the estimation of the kinetic constants A and B. In the case of  a 
linear equation of  two variables, six different forms of  the linear dependence exist 
between the variables [7]. Each of them may be a basis for estimation of the kinetic 
constants. The best pair of  kinetic constants may be selected either on the basis of 
the statistical estimation parameters, such as the correlation coefficient and the 
standard deviation in the estimated parameters, or by comparing the values cal- 
culated for a given pair of  kinetic constants with the measured values [8]. 

N 

S1 = ~ (mit - mi)2/N (9) 
i = 1  

where m i, mit mean the values measured and calculated, respectively, for the kinetic 
constant values. 

Calculation of  the kinetic constant values according to the principles presented 
has been done both for the "experimental data" calculated with an assumed activa- 
tion energy E = 86640 J/tool and pre-exponential constant k 0 = 44670 mg2/min 
cm 2 for the heating rate fl = 9.68 degree/min, and for the real experimental 
results. The results obtained have been presented separately [7 -9 ] .  In general, the 
following comments seem to be fitting: 

1) The two-variable linear correlation method leads to values of  the kinetic 
constants for which the difference between the calculated and measured values of 
the mass change is comparable to or greater than the measurement precision. 

2) Taking into account the dependent variable statistical weight in the estima- 
tion calculations leads to the estimated constants being more similar to the correct 
values. The assumption of  the lower standard deviation values has an insignificant 
effect on the estimation result. 

3) The values of the standard deviations of the parameters estimated depend on 
the assumed values of  the standard deviations in the individual measurements. 
Assuming the lower values of  the standard deviations of the measurement results 
may lead to too optimistic an opinion of  the estimation precision. 

The basis for verification may be the values of  standard deviations of kinetic 
parameters estimated by means of  a method which does not take into account the 
statistical weight of  the measurements. 

4) The activation energy values calculated by the various methods differed by up 
to 10 ~ from the assumed values. In the case of  determination of the value of the 
pre-exponential constant/Co, a significant error was noted. For the logarithmic 
method this error was of  the order of 400 ~.  In the case of the Coats-Redfern meth- 
od the estimated values of k 0 were lower than the assumed ones by 50 ~ .  In general, 
the various methods led to different values of the parameters estimated. The esti- 
mations of  the kinetic constants in the range of  individual variants of the same 
methods differed less significantly than the average values determined for diffe- 
rent methods. 

5) The correlation coefficient was not a good basis for estimating the quality of 
the results obtained. 
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In all cases its value was high, exceeding 0.9. Even with the high correlation coef- 
ficient value, the values of  parameters estimated may differ significantly from the 
actual ones. The opinion obtained as to the estimation quality by comparing the 
values of  the error function S1 for different pairs of  the kinetic constants allowed 
in principle selection of the best values, but this dependence was not explicit and 
slight deviations were possible. 

Function error minimum 

The results presented indicate that estimation of  the kinetic constants by means 
of  methods based on the linear correlation of  two variables may be a source of error 
comparable with the measuring error. The only way to reduce this error is the 
application & t h e  error function S1 (9), not only as a criterion for the quality esti- 
mation of the kinetic constants estimated, but directly as a basis for determining 
the kinetic constants. The literature on this problem includes a set of  various meth- 
ods for determining the constraint minimum for non-linear limiting constraints [1]. 
The task consists in the selection of  the most effective method. The additional, 
specific element for the problem of  elaborating the experimental data is the opinion 
as to the precision of determination of  the kinetic constant values. 

Sometimes, due to the form of the given kinetic function, it is not purposeful to 
apply more general procedures for determining the constraint minimum, but rather 
other, more effective ones. 

In the case of  the determination of  metal oxidation constants according to the 
parabolic law for non-isothermal data, the two-stage procedure is more effective. 
In the first stage the analytical form of the equation determining the pre-exponen- 
tial constant value of  the minimizing error function S1 at the activation energy 
assumed is determined. The second stage consists in determining the absolute 
minimum of the error function, checking out the changes in error function values 
for the minima given above, together with the change in activation energy. 

Also, it is necessary to transform the kinetic function in such a way as to obtain 
a convenient form of  equation determining the minimum assumptions for the cross- 
section. For  example, in the case of  determining the oxidation kinetic constants 

f~om isothermal measurements, the relation m 0 = cx /k ,  (where m 0 = initial mass, 
c = constant and k = oxidation kinetic constant under isothermal conditions) is 
presented, and subsequently the error function minimum is determined at a given 
constant value e. During the second stage the effect of  change in the c value on the 
determined minimum value is examined. In both cases, the task of determining the 
minimum depending on two parameters consists in determining the single-param- 
eter function minimum, depending on the activation energy in the first case or 
"constant" c in the second one. 

A disadvantage of  using the error function S1 as a basis for estimating the kinetic 
constants is the characteristic shape of the S1 surface. In the case of non-isothermal 
measurements in the (S1, k 0,E) space, the surface S1 similar rather to a narrow chan- 
nel than a round hollow is determined by Eq. (9), and its lowest point determines 
the kinetic constant values minimizing the S1 error. Thus, there exist many pairs of  
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kinetic constant values for which the $1 error values differ relatively insignificantly 
from each other. It is therefore necessary to be careful in completing the calcula- 
tions even for small differences between the subsequent values of $1 errors. 

The precision of the kinetic constants may be estimated by the limit of the kinetic 
constant confidence region which could be expected with a given probability 1 - 
to include the actual values of the parameters estimated. 

The basis for such an estimation could be the standard deviations of both param- 
eters estimated. To determine them, it is necessary either to know the equations 
forming the parameters minimizing the error function $1 with the experimental 
data, or to know the values of the partial derivatives of both parameters in relation 
to all values measured at the minimum point. On the one hand it is usually difficult 
to determine the analytical form of the equation sought, while on the other hand 
the calculation of the derivative values is always possible, but the appropriate pro- 
cedures are complicated. 

Another method for the estimation of the precision in the determination of the 
parameters seems to be more effective. As the sample of experimental data is repre- 
sentative of the whole population of the experimental data, the given surface of the 
error function in space (S1, k o, E)  is representative of the whole family of surfaces 
determined by various samples from the experimental result population. 

For the given kinetic constant values k 0 and E the probability of obtaining the 
given value of the error S1 is determined by the probability of an experimental data 
sample occurrence. 

Assuming that the distribution of function S1 values is similar to the chi square 
distribution for the actual values of the kinetic constants, and for the normal distri- 
bution of the kinetic constants different from the real one, an attempt can be made 
to determine the limit of the estimated parameter confidence region. 

For the minimum point S1 there is a probability (1 - :r that the error function 
S1 value for the actual values of the kinetic constants will be lower than or equal to 

G1 = Z2(a, h) �9 s2(m)/N (10) 

where 7. 2 (a, h) is determined from the chi square distribution for h degrees of free- 
dom at the significance level :r and s(m) is the standard deviation of the experi- 
mental result. 

For other points S1 there is a probability (1 - a)that the error function S1 
value for values of the kinetic constants k 0 and E different from the real ones will 
be higher than 

G2 = S l ( k  o, E)  - t(~, h )s[S l (k  o, E)] (11) 

h 

t (c~,h) 

Fig. 1 
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where t (~, h) is determined from Student's distribution for h degrees of freedom at 
the significance level e, and s[Sl(ko, E)] is the standard deviation of the error func- 
tion. 

In both cases the number of  degrees of freedom is equal to the number of experi- 
mental data N. The confidence region limit is determined by 

G1 = G2. (12) 

There is a probability (1 - c~) that the actual values of the kinetic constants will 
be situated inside this region. 

A 

"X3 (o~,h) 
Fig. 2 

The standard deviation s[Sl(ko, E)] may be calculated from the law of error 
propagation 

sZ[Sl(k~ = i=1 ~ [-~m~ ] s2(m) = s2(m)Sl(k~ (13) 

Taking into account the above, the following relation is obtained from Eq. (12) 

- -  s(m) [t(~, IV) + x/ tz(~,N) + Z2(a ,~  (14) 
d $1(]s g)lim. = d---- ~ -  

determining the error value on the confidence region limit. 
In the knowledge of the Sl (k  0, E)~im., it is possible to determine the course 

of the confidence region limit on the /co, E plane at the significance level ct 
assumed. The location of the limit depends not only on the assumed significance 
level, but also on the measurement precision. The confidence region is greater when 
the standard deviations(m) is greater and the measurement precision is lower. Also 
it is smaller when a greater value of error e is assumed. 

Due to the shape of the S1 (/Co, E) surface, determination of the confidence region 
limits is relatively precise. At a fixed value of one of  the constants, e.g. the activa- 
tion energy, the $1 value change together with the constant k 0 change is relatively 
high. 

In the case of difficulties in obtaining the analytical dependence between Sl(k 0, 
E)lim" and k 0' E relatively good results may be obtained by determining the S1 
error value for several values of the constant k 0 at fixed E, the intermediate points 
being interpolated by means of the square function. For the calculation of the limit 
error Sl(k0, E)llm value, it is unnecessary to know either the values of minimum 
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error S1 or the values of parameters minimizing the S1 error; hence, in doing this 
we can combine the procedure of minimum determination with the procedure of 
estimating the kinetic constant confidence region limits. By determining the loca- 
tions of these points for several values of the activation energy, both the minimum 
location and the confidence region limit can easily be determined. Such a procedure 
can be easily programmed, using a simple computer, independently of the form 
of the kinetic equation describing the hypothetical course of the reaction examined. 

1 7 -  !16 
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./,/ 'It 

I -  Q I \ "  t " "  - - : "  " /F I I 
80 82 84 86 88 92 92 
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i it* 
94 96 98 
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The programm for determining the best values of the kinetic constants, minimiz- 
ing the error function S1 as well as the calculations of the course of the confidence 
region limit, has been elaborated for the computer operated at the ]nstitue of Non- 
Ferrous Metals. Calculations of the kinetic constant values according to the prin- 
ciples have been done for the "experimental" data already calculated, which have 
been used in testing the methods based on the linear correlation of two variables. 

Figure 3 shows the course of the confidence region limits (continous line) with 
marking of the S1 function minimum point (marked by a cross). 

The significance level assumed was ~ = 0.01. Additionally, the S1 function mini- 
mum values change (broken line with points) in subsequent cross-section of the 
SI surface by E = const, planes (broken line) have been shown in Fig. 3. The 
results obtained allow the following comments: 

1. The method for calculating the kinetic constants by searching for the minimum 
of the S1 function gives very precise results with a simultaneously simple calculat- 
ing technique. Although the calculations have been done for 13 sections for the 
activation energies in the range 80-  98 k J/tool, the activation value determined dif- 
fers only by 1.5 % from the assumed value, while the exponential constant value dif- 
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fers by  159/oo f rom the assumed one. The  es t imat ion error  de te rmined  by the S1 
funct ion  value  is less by  at  least  two orders  t han  the value de te rmined  by  methods  

based  o n  the l inear  cor re la t ion  o f  two variables .  
2. The  course o f  the  confidence region l imit  indicates  the  var ie ty  o f  the confidence 

region  shapes,  depend ing  on  the fo rm o f  the ma themat i ca l  mode l  equat ion.  
3. The  mic rocompu te r  ope ra t ion  t ime in searching for  the  error  func t ion  mini-  

m u m  was much  shor ter  than  in the  case o f  app ly ing  the methods  based  on  the 
l inear  cor re la t ion  o f  two variables ,  and  the  calcula t ion results  ob ta ined  gave a bet ter  
poss ibi l i ty  o f  a correct  measurement  qual i ty  es t imat ion.  
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ZUSAMMENI~ASSUNG - -  Die Methode zur Bestimmung yon kinetischen Konstanten kann einem 
wesentlichen Einflu/3 auf den Estimationsergebnis austiben. Die linearen Korrelations met- 
hode yon zwei Variablen fiihrt zur konstanten kinetischen Werten, ffir die die Differenz 
zwischen den berechneten und gemessenen Werten vergleichbar oder grOBer als der 
Messfehler ist. Sehr genaue Resultate ergibt die nicht-lineare Methode zur Bestim- 
mung der kinetischen Konstanten durch Ermittlung des Minimums der Fehlerfunktion 

N 

S1 = I ~  ( m i -  mit)2/N, worin mi bzw. mit die gemessenen bzw.'berechneten Werte und N 
i = l  

die Zahl der experimentellen Daten bedeuten. Eine einfache Berechnungstechnik ist zur 
Festlegung des Minimumpunktes und der Grenzen des Vertrauensbereichs erforderlich. Eine 
genaue Berechnung wurde nach dem parabolischen Gesetz fiir die Metalloxydation ausgefiihrt. 

Pe3 ioMe - -  3Ha~rtTe:IbHOe BYlHItHHe n a  ol jem~y p e 3 y ~ T a T O B  oKa3r~maeT MeTO~ o n p e J l e n e ~  ir 

tleTrlqecKrlx KOHCTaHT. ,~ByxIaepeMeHHBlki ~HHe~I-IO-KoppegI~IIHOHHBI17I MeTO~I npJIBO~ltT K 3Ha-  
HeHI491M KmteTrr~ec~o~ KOHCTaHTBI, ,/IYI~l I~OTOpO]~ pa3smqr l e  M e x ~ y  BBIqEICYIeHHblM H ~3MepeI-mX,iM 

3HaqeHHeM ~IBYI~eTC~I cpaBHtIMbIM HJ]H 6OYlBIUHM, xieM TOtIHOCTB R3MepeHBsI. Hestrme~tm, i~ 
MeTO~I BblqHCJ'IeHH~I KIn-IeTH~IeCKHX KOHCTaHT FIOHCKOM MHHHMyMa dpyaxlmr i  oma6K~t  

N 

= Z(mt--mit)2/N,  r~Ie mj ~I mit 03nanaer, COOTBeTCTBenno, rI3MepenHoe S1 H BbpLv~cJ/erlHoe 
i = l  

3HaqeltHe,  N-q~IcJio 3KGHepHMeHTaJII, HBIX J~aHHBIX, ~laeT OHeHB TO~II, Ie pe3yYtbTaTbI. HpOCTO~ 
MeTeR Bt, iqRcJIeHt,ffl Heo{Sxo~,H.M ,tI.rl~l HO~FOFIKI~ TOtIKH MI, IHBjVlyMa I,I ~oBepRTeYII,HOrO HI-I- 
TepBa2ia t lpri  3HaqJ, ITeJI]bHOM ypOBHe. COoTBeTCTBylOmee BBIq]4cYleHHe 6BIYlO n p o B e ~ e n o  ~IJ~ peaK-  

IIHR OIr I~ MeTasi~aa, H C X O ~  !,13 n a p a 6 0 n r l q e c K o r o  3aKoHa.  
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